Preparation, Mass Spectra, and Acid-catalysed Rearrangement of Aryl-substituted Azetidin-2-ones

By P. G. Bird and W. J. Irwin,* Department of Pharmacy, University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET

Abstract

Several acid-catalysed reactions of aryl-substituted azetidin-2-ones are described. Thus 1,3,4-triphenylazetidin-2one underwent rearrangement in concentrated sulphuric acid to yield the isomeric 3,4-dihydro-3,4-diphenyl-quinolin- $2(1 H)$-one; however, reaction in toluene with boron trifluoride as catalyst yielded $N, 2,3$-triphenyl-3-(4-tolyl)propionamide, a toluene adduct. 1,4-Diphenylazetidin-2-one underwent similar reactions, but when the rearrangement was performed in chlorobenzene the isomeric cinnamanilide was obtained. In contrast, treatment of 1,3,3,4,4-pentaphenylazetidin- 2 -one with boron trifluoride in toluene caused a fission reaction and α-phenylbenzylideneaniline and diphenylacetic acid were isolated, whereas 1,3,4,4-tetraphenylazetidin-2-one yielded 2,3diphenylindene by extrusion of a molecule of aniline. The mass spectra of several aryl-substituted azetidin-2-ones are discussed in terms of the principal decomposition modes which yield ions due to keten, anil, olefin, and isocyanate fragments.

Many varied rearrangements of derivatives of azetidin2 -ones are now known, although the majority of these have been demonstrated with the reactive penicillin nucleus. Rearrangements of monocyclic azetidin-2-ones include epimerisation, ${ }^{1}$ ring fission, ${ }^{2}$ ring expansion, ${ }^{3}$ a Cope-type reaction, ${ }^{4}$ and rearrangements of aminoazetidinones. ${ }^{5}$ Further, it has been shown that 1,4-diphenylazetidin-2-one, on treatment with concentrated sulphuric acid, yields 3,4 -dihydro-4-phenylquinolin$2(1 \mathrm{H})$-one ${ }^{6}$ (formation of a 4,4a-bond), whereas $1,3,3,4,4-$ pentaphenylazetidin-2-one gives 3,4-dihydro-1,3,3,4-tetraphenylquinolin- $2(1 \mathrm{H})$-one ${ }^{7}$ (formation of a $1,8 \mathrm{a}$ bond). We have now shown that, depending upon the reaction conditions and the substituents present in the azetidinone ring, acid-catalysed rearrangement may proceed by any of several pathways.
Treatment of 1-(4-methoxyphenyl)-4-phenylazetidin2 -one (1) with concentrated sulphuric acid at room temperature for 16 h yielded the isomeric 6 -methoxy4 -phenylquinolin- $2(1 H)$-one (2), identical with a sample prepared from 4'-methoxycinnamanilide and polyphosphoric acid. ${ }^{8}$ This reaction may involve O-protonation which initiates 3,4 -bond fission; the resulting intermediate then cyclises to yield the quinolinone via the stabilised benzylic carbonium ion. The course of the reaction was unchanged when trisubstituted compounds were used, and 1,3,4-triphenyl- (3) and 1-(4-chlorophenyl)-3,4-diphenyl-azetidin-2-ones (5) underwent similar reactions to yield the corresponding quinolinones, (4) and (6).
${ }^{1}$ A. K. Bose, C. S. Narayanan, and M. S. Manhas, Chem. Comm., 1970, 975.
${ }^{2}$ L. Paquette, M. Wyuratt, and G. Allen, J. Amer. Chem. Soc., 1970, 92, 1763; M. Fischer, Chem. Ber., 1968, 101, 2669.
${ }^{3}$ D. Barman, Angew. Chem. Internat. Edn., 1969, 8, 892; T. Doyle and T. Conway, Tetrahedron Letters, 1969, 1889.

It has been shown ${ }^{6}$ that, when no cyclisation takes place, olefins which are isomeric with the azetidinone may be isolated; in attempts to isolate intermediates from the cyclisation reactions, the reaction conditions were varied. Initial attempts to catalyse the rearrangement with a

Lewis acid (boron trifluoride-diethyl ether complex) in chloroform were unsuccessful (starting material was recovered) but when toluene was used as solvent reaction occurred. Thus 1-(4-methoxyphenyl)-3,4-diphenylaze-

[^0]tidin-2-one (1), boron trifluoride, and toluene, heated under reflux, yielded a colourless product [$m / e 421\left(M^{+}\right)$], which, however, was not isomeric with the azetidinone [m/e $\left.329\left(M^{+}\right)\right]$. This mass difference (equivalent to a toluene molecule), the presence of an extra methyl resonance ($\tau 7.8$) in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, and the increase in the vicinal coupling constant of the azetidinone ring protons from 2.5 (cyclic trans) to 12 Hz (acyclic anti) rather than the 6 Hz found for the $3,4-$ diphenylquinolinone (4) suggested that an intermolecular

reaction with solvent had occurred to yield N-(4-methoxyphenyl)-2,3-diphenyl-3-(4-tolyl)propionamide
(8). 1,4-Diphenyl- (9) and 1,3,4-triphenyl-azetidinone (ll), and the spirofluorene (13) similarly yielded ringopened β-(4-tolyl) amides [(10), (12), and (14)]. The use

(13)

(14)
of other reactive aromatic solvents furnished similar products and in this way 1,4 -diphenylazetidin-2-one (9) and anisole yielded 3-(4-methoxyphenyl)- $N, 3$-diphenylpropionamide.

The formulation of these reaction products as ringopened amides which had undergone electrophilic substitution by an aromatic solvent prompted an investigation of the reaction in an inert solvent. 1,4-Diphenylazetidin-2-one and boron trifluoride in chlorobenzene yielded a product without solvent incorporation which was isomeric with both azetidinone and quinolinone, and which was shown to be cinnamanilide. Under the conditions of the foregoing experiments, cinnamanilide did not react with toluene to yield the (4-tolyl)propionamide, a fact which precludes the intermediacy of olefins in those reactions.

Treatment of 1,3,3,4,4-pentaphenylazetidin-2-one with toluene and boron trifluoride, however, did not yield the expected fully-substituted propionamide, but gave a mixture of α-phenylbenzylideneaniline and diphenylacetic acid. The latter probably results from reaction of the initially formed diphenylketen, for the presence

[^1]of ethanol leads to the isolation of ethyl diphenylacetate. The reaction of 1^{\prime}-(4-methoxyphenyl) $\mathbf{3}^{\prime}, 3^{\prime}$ -diphenylfluorene- 9 -spiro- 2^{\prime}-azetidin- 4^{\prime}-one (15), another fully substituted compound, followed a similar pathway to yield the corresponding anil (16) and diphenylacetic acid (17). This type of fission reaction appears to be limited to fully substituted azetidinones in which substituents at C-3 and C-4 are eclipsed. This will exert considerable strain on the $C(3)-C(4)$ bond and it is probable that the relief of this strain is the driving

force for reaction, rather than the production of the stabilised carbonium ion observed previously.

A further reaction in which no solvent incorporation was observed owing to an alternative mode of reaction being available was found with 1,3,4,4-tetraphenyl-azetidin-2-one (18). Treatment of this compound with toluene and boron trifluoride yielded a red crystalline compound in good yield. The i.r. spectrum ($v_{\mathrm{CO}} 1700$ cm^{-1}) indicated that this was not an amide, nor indeed would such an intense chromophore be expected from a toluene adduct, and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum indicated the presence of aromatic protons only. The product was eventually shown to be 2,3 -diphenylindenone ${ }^{9}$ (20) [m/e $\left.282\left(M^{+}\right)\right]$produced from the azetidinone by the expulsion of aniline. This result may be explained in terms of initial production of a stabilised carbonium ion

(15) R $=\mathrm{p}-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$
(16)

resulting in the rapid formation of an olefin (19) by β-proton loss (Scheme 1). Evidence which indicated the importance of the formation of a stabilised ion was obtained in a similar reaction of 1,3,3,4-tetraphenyl-azetidin-2-one. Treatment of this compound with
toluene and boron trifluoride also yielded 2,3-diphenylindenone, but in poor yield, and starting material was recovered. This reaction probably entails ring opening

Scheme 1
followed by a 1,2 -phenyl shift with subsequent proton loss to yield the acrylamide (19).

The azetidinones used in this study were prepared by known $[2+2]$ cycloaddition reactions of an anil and a keten. ${ }^{10}$ The keten was isolated pure (diphenylketen), or was generated and used immediately (keten), or was generated in situ (phenylketen). The azetidinones (20)-(22) were obtained readily from anils derived from 2 -, 3 -, and 4 -aminopyridines and diphenylketen, as were compounds (23) and (25) from this keten and 4-chloroand 4-nitro-benzylideneaniline, despite reports to the contrary. ${ }^{11}$

The Table records the mass spectral fragmentation of a series of aryl-substituted azetidin-2-ones. The molecular ion is usually weak or absent and in general two

[^2]distinct modes of decomposition were found. These may be considered as the reverse of possible $[2+2]$ cycloadditions via which the azetidinones may be synthesised (see Figure). ${ }^{12-15}$ Thus fission by pathway I leads to fragment ions due to a keten and an anil whereas pathway II produces olefin and isocyanate residues. Usually all four of these possible decomposition ions are observed, but the intensity is dependent upon the nature of substitution. The extrusion of CO from the molecular ion was an alternative mode of fragmentation but this usually accounted for only a small proportion of the total ion current.

The mass spectra of the 3,3-diphenylazetidinones (Table) were qualitatively similar and showed typical fragmentation pathways. Thus 1,3,3,4,4-tetraphenyl-azetidin-2-one (32) showed a weak (3%) molecular ion (m / e 375) and principal decomposition via pathway I (Scheme 2) to yield the diphenylketen radical ion (m / e 194, base peak) and the benzylideneaniline radical ion (m / e 181). The former underwent further decomposition by successive losses of CO and H to yield the second most abundant ion ($\mathrm{m} / \mathrm{e} 165$). The first of these transitions (194-CO) generated an intense metastable ion ($m^{*} 141 \cdot 9$) which was an extremely characteristic feature of the mass spectra of all of the 3,3 -diphenyl-azetidin-2-ones examined. The benzylideneaniline radical ion ($m / e 181$) also underwent further decomposition by loss of $\mathrm{H}(m / e 180)$ or phenyl radical ($m / e 104$). The alternative mode of fission (pathway II) was a relatively minor process yielding fragments corresponding to the olefin ($m / e 256$) and phenyl isocyanate ($m / e 119$). Decomposition of the molecular ion via CO loss yielded a weak (1%) ion ($m / e 347$).

Halogen substitution in the 4 -phenyl group (23) had little effect upon the fragmentation pattern but the keten residue then accounted for more of the total ion current via pathway I and a small reduction in intensity of the olefin peak was apparent. However, with the 4-(4-nitrophenyl) derivative (25), although pathway I via the diphenylketen radical ion ($m / e 194$) was still

the preferred mode of decomposition, a major fragment (76%) was then due to the olefin radical ion ($m / e 301$). This trend was continued in the decomposition of the isomeric 4-(x-pyridyl)azetidinones (20)-(22) and al-
${ }^{13}$ M. B. Jackson, T. Spotwood, and J. H. Bowie, Org. Mass Spectrometry, 1968, 1, 857.
14 A. K. Bose and I. Kugajevsky, Tetrahedron, 1967, 23, 957.
${ }^{15}$ L. A. Singer and G. A. Davis, J. Amer. Chem. Soc., 1967, 89, 942.

Mass spectral fragmentation of aryl-substituted azetidin-2-ones
Fragment ions [m/e (\%)]

Compound no.	Substituents*				M^{+}				$\mathrm{R}^{1} \mathrm{NCO}$	Base peak
	R^{1}	$\mathrm{R}^{2} \mathrm{R}^{3}$	R4	R^{5}						
	Ph	Ph Ph	Ph	Ph	451 (1)	194 (49)	257 (53)	332 (1)	119 (1)	165
	Ph	Ph Ph	Ph	H	375 (2)	194 (100)	181 (40)	256 (44)	119 (3)	194
(33)	Ph	Ph Ph	2-Pyridyl	H	376 (9)	194 (33)	182 (6)	257 (100)	119 (2)	257
(21)	Ph	Ph Ph	3-Pyridyl	H	376 (9)	194 (100)	182 (17)	257 (56)	119 (3)	194
(22)	Ph	Ph Ph	4-Pyridyl	H	376 (3)	194 (53)	182 (10)	257 (100)	119 (3)	257
(23)	Ph	Ph Ph	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	409 (1)	194 (100)	215 (17)	290 (23)	119 (1)	194
(24)	Ph	Ph Ph	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	H	393 (2)	194 (100)	199 (25)	274 (32)	119 (1)	194
(25)	Ph	Ph Ph	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	420 (1)	194 (100)	226 (11)	301 (76)	119 (3)	194
(26)	3-Pyridyl	Ph Ph	$\mathrm{Ph}{ }^{\text {a }}$	H	376 (3)	194 (100)	182 (9)	256 (26)	120 (1)	194
(27)	4-Pyridyl	Ph Ph	Ph	H	376 (11)	194 (100)	182 (7)	256 (26)	120 (1)	194
(15)	Ph	Ph Ph	Fluorene-9-spiro		449 (1)	194 (3)	255 (19)	330 (1)	119 (1)	167
(28)	$4-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	Ph Ph	Fluorene-9-spiro		479 (-)	194 (6)	285 (100)	330 (-)	149 (3)	285
(3)	Ph	Ph H	Ph	H	299 (1)	118 (1)	181 (26)	180 (100)	119 (1)	180
(29)	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Ph^{H}	Ph	$\stackrel{\mathrm{H}}{\mathrm{H}}$	333 (1)	118 (17)	215 (16)	180 (100)	153 (-)	180
(7)	4-MeO. $\mathrm{C}_{6} \mathrm{H}_{4}$	Ph H	Ph	H	329 (1)	118 (3)	211 (24)	180 (100)	149 (15)	180
(30)	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Ph H	Fluorene-9-spiro		407 (4)	118 (3)	289 (100)	254 (7)	153 (2)	289
	Ph	Ph H	Ph	Ph	327 (-)	118 (-)	257 (100)	256 (28)	119 (21)	257
(13)	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H H	Fluorene-9-spiro		329 (2)	42 (-)	289 (2)	178 (100)	153 (9)	178
(9)	Ph	H H	Ph	H	223 (10)	42 (-)	181 (9)	104 (100)	119 (10)	104

* See Figure.

Scheme 2
though pathway I (base peaks m / e 194) remained the predominant mode of fragmentation in the 4 -(3-pyridyl)azetidinone (21), with the 4-(2- and 4-pyridyl) isomers (20) and (22) pathway II was the source of the base peak ($m / e 257$). This effect may be due to the presence of a new centre with a low ionisation potential, i.e. the 2 - or 4 -pyridyl residue, which controls subsequent fragmentation (Scheme 3).

Scheme 3
In the mass spectra of those azetidinones with only one 3 -phenyl substituent pathway I no longer appeared to be a major decomposition route. In contrast, for the 3,3-diphenyl compounds fission in this direction resulted in the anil fragment carrying most of the ion current. Thus the mass spectrum of 1,3,4-triphenylazetidinone (11) showed a weak (1%) molecular ion ($m / e 299$) which underwent decomposition to yield the benzylideneaniline radical ion ($m / e 181$) and the base peak at m / e 180. This latter ion was formulated as the stilbene radical ion and showed characteristic loss of methyl. ${ }^{16}$ A further source of this ion (m / e 180), however, is hydrogen loss from the anil residue ($m / e 181$); this was confirmed by high resolution mass measurement. No such ambiguity was possible with 1-(4-chlorophenyl)-3,4-diphenylazetidin-2-one (29) and the base peak (m / e 180) was clearly due to the olefin residue.

The spectra of 4,4-disubstituted azetidinones, which may be regarded as formally derived from the anils of ketones, showed enhanced decomposition via this anil fragment presumably due to the extra stabilisation caused by the second aromatic substituent, and pathway I was the major route of decomposition of $1,3,3,4,4$ -pentaphenylazetidin-2-one (31).

EXPERIMENTAL

${ }^{1} \mathrm{H}$ N.m.r. spectra were determined for solutions in deuteriochloroform with a Varian A60A spectrometer (tetramethylsilane as internal reference). I.r. spectra were obtained with Unicam SP 200 spectrophotometer and mass spectra with an A.E.I. MS9 spectrometer (ionising voltage 70 eV , trap current $100 \mu \mathrm{~A}$, accelerating voltage 8 kV);
${ }^{16}$ R. A. W. Johnstone and B. J. Millard, Z. Naturforsch., 1966, 219, 604.
samples were introduced through the heated inlet system at 150°.

3,3-Diphenylazetidin-2-ones

4-(4-Chlorophenyl)-1,3,3-triphenylazetidin-2-one (23).-A solution of diphenylketen ${ }^{17}(5 \cdot 0 \mathrm{~g})$ in dry ether ($30 \mathrm{~cm}^{3}$) was slowly added to a stirred solution of 4 -chlorobenzylideneaniline ($5 \cdot 0 \mathrm{~g}$) in dry ether ($30 \mathrm{~cm}^{3}$). The precipitate crystallised from methanol to yield the azetidin-2-one ($5 \cdot 3 \mathrm{~g}$, 56%) as needles, m.p. $157-158^{\circ}$ (Found: C, 79.1; H, $5 \cdot 1$; $\mathrm{Cl}, 8.9 ; \mathrm{N}, 3 \cdot 6 . \quad \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{ClNO}$ requires $\mathrm{C}, 79 \cdot 2 ; \mathrm{H}, 4 \cdot 9$; $\mathrm{Cl}, 8.7$; $\mathrm{N}, 3.4 \%$), $\nu_{\text {max }} 3050,1750(\mathrm{C}=\mathrm{O}), 1603,1510$ (aromatic nucleus), 1395,1100 , and $1020 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right)$ $2 \cdot 3-2 \cdot 9(19 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $4 \cdot 2(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.

The following compounds were similarly prepared: 3,3,4-triphenyl-1-(3-pyridyl)azetidin-2-one (26) (7.9 g, 77%) as needles, m.p. $177-178^{\circ}$ [from 3-benzylideneaminopyridine (5.0 g)] (Found: C, 82.3; H, 5.3; N, 7.3. $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 0 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 7.3 \%$), $\nu_{\text {max }} 3050$, $1750(\mathrm{C}=\mathrm{O}), 1600,1490,1450,1390$, and $1150 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{2}\right)$ $1 \cdot 4(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}$, pyridyl $2-\mathrm{H}), 1 \cdot 6(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}$, pyridyl $6-\mathrm{H}), 2 \cdot 2-3 \cdot 1(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and pyridyl $4-$ and $5-\mathrm{H})$, and $4 \cdot 15(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; 3,3,4$-triphenyl-1-(4-pyridyl) azetidin-2-one (27) from 3 -benzylideneaminopyridine ($5 \cdot 0 \mathrm{~g}$) (yield $7 \cdot 1 \mathrm{~g}$, 69%) as needles, m.p. $158-159^{\circ}$ (from methanol) (Found: $M^{+} 376 \cdot 157034 . \quad \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.M, 376 \cdot 157555\right)$, $\nu_{\text {max }} 3050,1760(\mathrm{C}=\mathrm{O}), 1603,1510,1390$, and $1150 \mathrm{~cm}^{-1}$, $\tau\left(\mathrm{CDCl}_{3}\right) 1 \cdot 6(2 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}$, pyridyl 2 - and $6-\mathrm{H}), 2 \cdot 2-3 \cdot 1$ $(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and pyridyl $3-$ and $5-\mathrm{H})$, and $4 \cdot 15(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; 1,3,3-triphenyl-4-(2-pyridyl)azetidin-2-one (33) from 2pyridylmethyleneaniline (3.0 g) (yield $1.33 \mathrm{~g}, 21.4 \%$) as needles, m.p. 162-164 (from methanol) (Found: C, 83.1; $\mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 7 \cdot 4 . \quad \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 0 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}$, $7 \cdot 3 \%), \nu_{\max } 3050,1750(\mathrm{C}=\mathrm{O}), 1603,1510,1390$, and 1150 $\mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 1 \cdot 4(1 \mathrm{H}, \mathrm{m}$, pyridyl $2-\mathrm{H}), 2 \cdot 1(2 \mathrm{H}, \mathrm{m}$, pyridyl 4- and $5-\mathrm{H}), 2 \cdot 3-3 \cdot 3(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and pyridyl $3-\mathrm{H})$, and $3.9(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; 1,3,3-triphenyl-4-(3-pyridyl)azetidin2 -one (21) from 3 -pyridylmethyleneaniline (3.0 g) (yield $1.42 \mathrm{~g}, \mathbf{2 2} \cdot 8 \%$) as needles, m.p. $137-138^{\circ}$ (from methanol) (Found: $M^{+} \quad 376 \cdot 157786 . \quad \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires M, $376 \cdot 157555$), $\nu_{\text {max. }} 3050,1750(\mathrm{C}=\mathrm{O}), 1603,1510$ (aromatic nucleus), 1390 , and $1150 \mathrm{~cm}^{-1} \tau\left(\mathrm{CDCl}_{3}\right) 1.75(2 \mathrm{H}, \mathrm{m}$, pyridyl 2 - and $6-\mathrm{H}$), $2 \cdot 45-3 \cdot 2$ ($17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and pyridyl $4-$ and $5-\mathrm{H})$, and $4.35(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ [in this reaction a quantity of diphenylacetanilide (0.25 g) was formed, m.p. $185-186^{\circ}$ (Found: C, 83.6 ; H, 5.9 ; N, 4.9. Calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 83.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.9 \%$), $\nu_{\text {max. }} 3400,3050$, $1690,1603,1540,1510,1450$, and $1120 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 7$ $(15 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $4.9(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})] ; 1,3,3$-triphenyl-4-(4-pyridyl)azetidin-2-one (22) from 4-pyridylmethyleneaniline (3.0 g) (yield $3.8 \mathrm{~g}, 61.6 \%$) as prisms, m.p. $147-148^{\circ}$ [from petroleum (b.p. $60-80^{\circ}$)] (Found: C, 81.8 ; H, 5.4 ; N, $7 \cdot 2 \% ; M^{\dagger}, 376 \cdot 157005 . \quad \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 0 ; \mathrm{H}$, $5 \cdot 3 ; \mathrm{N}, 7.5 \% ; M, 376 \cdot 157555)$, $\nu_{\max } 3050,1750(\mathrm{C}=\mathrm{O})$, 1603, 1510, 1390, and $1150 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 1 \cdot 7(2 \mathrm{H}, \mathrm{d}$, $J 5 \mathrm{~Hz}$, pyridyl 2 - and $6-\mathrm{H}), 2 \cdot 3-3 \cdot 1(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and pyridyl $3-$ and $5-\mathrm{H}$), and $4 \cdot 25(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; $4-(4-n i t r o-$ phenyl)-1,3,3-triphenylazetidin-2-one (25) from 4-nitrobenzylideneaniline (4.0 g) (yield $6.1 \mathrm{~g}, 81 \%$) as yellow needles, m.p. $180-181^{\circ}$ (from methanol) (Found: C, $77.6 ; \mathrm{H}, 4.6$; $\mathrm{N}, 6.7 . \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $77 \cdot 2 ; \mathrm{H}, 4.8 ; \mathrm{N}, 6.7 \%$), $\nu_{\max } 3050,1750(\mathrm{C}=\mathrm{O}), 1603,1540,1510,1390,1350,1150$, 1110 , and $860 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 3(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 2-\mathrm{and}$

[^3]$6-\mathrm{H}$ of nitrophenyl), $2 \cdot 5-3 \cdot 2$ ($17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $3-$ and $5-\mathrm{H}$ of nitrophenyl), and $4 \cdot 2(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; 4 -(4-fluorophenyl)-1,3,3-triphenylazetidin-2-one (24) from 4-fluorobenzylideneaniline (3.0 g) (yield $3.5 \mathrm{~g}, 59 \%$) as needles, m.p. $189-190^{\circ}$ (from methanol) (Found: C, 82.0; H, 5.2; N, 3.4. $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{FNO}$ requires C, $82.9 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 3 \cdot 6 \%$), $\nu_{\max .} 3050$, $1750(\mathrm{C}=\mathrm{O}), 1603,1510,1390,1240,1150$, and $850 \mathrm{~cm}^{-1}$, $-\left(\mathrm{CDCl}_{3}\right) 2 \cdot 2-3 \cdot 2(19 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $4 \cdot 2(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$; 1^{\prime}-(4-chlorophenyl)-3', 3^{\prime}-diphenylfuorene- 9 -spiro- 2^{\prime}-azetidin-4^{\prime}-one (30) from 4 -chloro- N-fluoren- 9 -ylideneaniline (2.0 g) (yield $3.0 \mathrm{~g}, 91 \%$) as prisms, m.p. $255-258^{\circ}$ (from methanol) (Found: $M^{+}, 483 \cdot 136912 . \quad \mathrm{C}_{33} \mathrm{H}_{22} \mathrm{ClNO}$ requires $M, 483 \cdot 138983$) (for ${ }^{35} \mathrm{Cl}$), $\nu_{\text {max. }} 3100,1750(\mathrm{C}=\mathrm{O}), 1603,1510$, $1460,1390,1100$, and $840 \mathrm{~cm}^{-1}$; $1^{\prime}, 3^{\prime}, 3^{\prime}$-triphenyfluorene9 -spiro- 2^{\prime}-azetidin- 4^{\prime}-one (15) from fluoren- 9 -ylideneaniline (3.0 g) (yield $4.6 \mathrm{~g}, 87 \%$) as prisms, m.p. $277-279^{\circ}$ (from methanol) (Found: $M^{+}, 449 \cdot 175393 . \mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}$ requires $M, 449 \cdot 177955$), $\nu_{\text {max. }}$ (Nujol) 1745 (C=O), 1603, 1510, 1250 , $770,750,720$, and $700 \mathrm{~cm}^{-1}$; 1'-(4-methoxyphenyl) $\mathbf{3}^{\prime}, 3^{\prime}-$ diphenylfluorene-9-spiro-2'-azetidin-4'-one (28) from fluoren9 -ylidene- p-anisidine (1.0 g) (yield $1.54 \mathrm{~g}, 91 \%$) as prisms, m.p. $240-242^{\circ}$ (from methanol), $\nu_{\text {max. }} 3050,2590\left(\mathrm{OCH}_{3}\right)$, 1740 ($\mathrm{C}=\mathrm{O}$), 1603, 1590, and 1510 (aromatic nucleus), 1450 , $1380,1250\left(\mathrm{OCH}_{3}\right), 1160,1020,830,730$, and $700 \mathrm{~cm}^{-1}$, $\div\left(\mathrm{CDCl}_{3}\right) 2 \cdot 3-3 \cdot 7\left(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$, fluorenyl and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, and $6.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$.

General Method for the Preparation of 3-Phenylazetidin-2-ones.-A stirred solution of the Schiff's base ($0 \cdot 16 \mathrm{~mol}$), triethylamine (0.48 mol), and chloroform ($\left.50 \mathrm{~cm}^{3}\right)^{18}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and phenylacetyl chloride (0.32 mol) was added slowly. The mixture was allowed to attain room temperature during 1 h and then was washed with water ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to low bulk. Trituration and crystallisation of the residual yellow oil yielded the 3 -phenylazetidin- 2 -one.

1-(4-Chlorophenyl)-3,4-diphenylazetidin-2-one (29) was obtained from 4 -chloro- N-benzylideneaniline (1.0 g), triethylamine (1.0 g), chloroform ($25 \mathrm{~cm}^{3}$), and phenylacetyl chloride (1.5 g) (yield $0.68 \mathrm{~g}, 44 \%$) as needles, m.p. $148-$ 150° (from methanol), $\nu_{\text {max }} 3050,1740(\mathrm{C}=\mathrm{O}), 1505,1135$, 830,750 , and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 69-2 \cdot 9(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.1(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 4-\mathrm{H})$, and $5.75(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H})$ (Found: C, $75.9 ; \mathrm{H}, 4.9$; N, $4 \cdot 2 \%$; $M^{+}, 333.09100$. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClNO}$ requires $\mathrm{C}, 75 \cdot 7 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 4 \cdot 2 \% ; M$, $333 \cdot 092035)$. 1'-(4-Chlorophenyl) $\mathbf{- 3}^{\prime}$-phenylfluorene-9-spiro-2^{\prime}-azetidin-4'-one (30) was obtained from 4 -chloro- N -fluoren-9-ylideneaniline (2.5 g) (yield $3.2 \mathrm{~g}, 89 \%$) as prisms, $\mathrm{m} . \mathrm{p} .205^{\circ}$ (from methanol-chloroform) (Found: C, 79.4; $\mathrm{H}, 4.5 ; \mathrm{N}, 3.4 . \mathrm{C}_{27} \mathrm{H}_{18} \mathrm{ClNO}$ requires $\mathrm{C}, 79 \cdot 5 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}$, $3 \cdot 4 \%)$, $\nu_{\text {max. }} 3050,1745$ (C=O), 1603, 1500, 1460, 1390, 1100 , 910,830 , and $720 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 2-3 \cdot 2(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $4.85(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$. 3 -Chloro-1-(4-methoxyphenyl) 3,4 -di-phenylazetidin-2-one was obtained from benzylidene- p anisidine ($1.4 \mathrm{~g}, 0.066 \mathrm{~mol}$), triethylamine ($2.0 \mathrm{~g}, 0.2 \mathrm{~mol}$), and chloroacetyl chloride ($2.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) in chloroform ($25 \mathrm{~cm}^{3}$) (reaction for 15 h) (yield $1.0 \mathrm{~g}, 42 \%$) as needles, m.p. 130-132 ${ }^{\circ}$ (from methanol) (Found: C, 72.2; H, 4.9; $\mathrm{N}, 3.6 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 72 \cdot 6 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 3.8$), $\nu_{\text {max }} 3050,2950,1745,1520,1450,1390,1300,1250,1140$, $1030,830,750$, and $690 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 5-3 \cdot 3(14 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 4 \cdot 4(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, and $6.25(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.

3'-Chloro-1'-(4-methoxyphenyl)-3'-phenylfluorene-9-spiro-
18 A. Vogel, 'A Textbook of Practical Organic Chemistry,' Longmans, London, 1964, (a) p. 372, (b) p. 773, (c) p. 779.

19 W. Kirmse and L. Horner, Chem. Ber., 1956, 89, 2759.
2^{\prime}-azetidin- 4^{\prime}-one. α-Chloroacetyl chloride (8.0 g) was added slowly to a cooled mixture of fluorenylidene- p-anisidine (5 g), triethylamine (5.0 g), and chloroform ($120 \mathrm{~cm}^{3}$). The solution was stirred at room temperature for 30 min to yield the azetidin-2-one ($6.3 \mathrm{~g}, 82 \%$) as prisms, m.p. $160-$ 162° (from methanol) (Found: C, 76.7; H, 4.7; N, 3.1. $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ requires C, $76.9 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 3 \cdot 2 \%$), $\nu_{\text {max }} 3100$, $1770(\mathrm{C}=\mathrm{O}), 1530,1260,840$, and $750 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 1-$ $3.7\left(17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and fluorenyl), and $6.4(3 \mathrm{H}, \mathrm{s}$, OCH_{3}).
3'-Chloro-1'-(4-methoxyphenyl)fluorene-9-spiro-2'-azetidin-4'-one. Chloroacetyl chloride (1.0 g) was added slowly to a cooled, stirred solution of fluorenylidene- p-anisidine (1.35 g), chloroform ($20 \mathrm{~cm}^{3}$), and triethylamine (0.5 g) and the mixture was stirred for 10 min to yield the azetidin-2-one ($1.02 \mathrm{~g}, 30 \%$) as needles, m.p. $174-175^{\circ}$ (from ethanol) (Found: C, $73 \cdot 1 ; \mathrm{H}, 4.6 ; \mathrm{N}, 3.8 . \quad \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 73.0 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 3.9 \%)$, $\nu_{\max } 3000$ and $1760(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, $\tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 2-2 \cdot 85(8 \mathrm{H}, \mathrm{m}$, fluorenyl), $2.9(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, 3 - and $5-\mathrm{H}$ of methoxyphenyl), $3.4(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 2$ - and $6-\mathrm{H}$ of methoxyphenyl), $4.7(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, and $6.4(3 \mathrm{H}, \mathrm{s}$, OCH_{3}).

Rearrangement Reactions

(a) With Sulphuric Acid.-3,4-Dihydro-3,4-diphenylquino-lin-2(1H)-one (4). 1,3,4-Triphenylazetidin-2-one ${ }^{11,19,20}$ $(0.5 \mathrm{~g})$ and concentrated sulphuric acid $\left(4 \mathrm{~cm}^{3}\right)$ were stirred at room temperature for 2 h and then poured into iced water $\left(50 \mathrm{~cm}^{3}\right)$. Extraction with chloroform $\left(2 \times 50 \mathrm{~cm}^{3}\right)$, drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation yielded the dihydro$2(1 \mathrm{H})$-quinolone ($0.2 \mathrm{~g}, 40 \%$) as needles, m.p. 200° (from methanol) (lit., ${ }^{21} 220^{\circ}$), $\nu_{\text {max. }} 3300,3050,1675(\mathrm{C}=\mathrm{O}), 1600$, $1530,1450,1320,760$, and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 5-3 \cdot 2$ $\left(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 5.55(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H})$, and $5 \cdot 9$ ($1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 4-\mathrm{H}$), (Found: $M^{+} 299 \cdot 130931$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}: M, 299 \cdot 131007$).
3,4-Dihydro-6-methoxy-4-phenylquinolin-2(1H)-one (2). 1-(4-Methoxyphenyl)-4-phenylazetidin-2-one ($0 \cdot 6 \mathrm{~g}$) and concentrated sulphuric acid ($4 \mathrm{~cm}^{3}$) were mixed at room temperature for 16 h to yield the dihydro-2(1H)-quinolone $(0.3 \mathrm{~g}, 50 \%)$ as needles, m.p. $154-155^{\circ}$ (from chloroform) (lit., ${ }^{8} 155-156^{\circ}$), identical with a sample prepared from 4'-methoxycinnamanilide and polyphosphoric acid; $\nu_{\text {max }}$ $3300,2900,1660(\mathrm{C}=\mathrm{O}), 1510,1240\left(\mathrm{OCH}_{3}\right), 830$, and 700 $\mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2.5-3.6\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 5.8(1 \mathrm{H}, \mathrm{t}$, $J 7 \mathrm{~Hz}, 4-\mathrm{H}), 6 \cdot 4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, and $7 \cdot 15(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, $3-\mathrm{H}_{2}$).
(b) With Boron Trifluoride.-General method. The aze-tidin-2-one and boron trifluoride-diethyl ether complex were heated together in a solvent for 60 h . Cooling, washing with water, drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation yielded the product. Purification was effected by trituration and crystallisation from aqueous ethanol.

N-(4-Methoxyphenyl)-2,3-diphenyl-3-(4-tolyl) propionamide (8). 1-(4-Methoxyphenyl)-3,4-diphenylazetidin-2-one ($1 \cdot 0$ g), boron trifluoride-diethyl ether ($1.0 \mathrm{~cm}^{3}$), and toluene $\left(100 \mathrm{~cm}^{3}\right)$ yielded the propionamide $(0.45 \mathrm{~g}, 35 \%)$ as microprisms, m.p. 157-159 (from ethanol) (Found: C, 81.4; $\mathrm{H}, 6 \cdot 6 ; \mathrm{N}, 3 \cdot 1 \% ; M^{+}, 421 \cdot 204224 . \quad \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires C, $82 \cdot 6 ; \mathrm{H}, 6 \cdot 4 ; \mathrm{N}, 3 \cdot 3 \%$; $M, 421 \cdot 204168), \nu_{\text {max }} 3300(\mathrm{NH})$, $3050,2950,1650(\mathrm{C}=\mathrm{O}), 1603,1520,1250\left(\mathrm{OCH}_{3}\right), 1170$, 1040,760 , and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 1-3 \cdot 1(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$

[^4]and $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Me}$), $3.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9 \mathrm{~Hz}, 3-\right.$ and $\left.5-\mathrm{H}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, $3.45\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, 2\right.$ - and $6-\mathrm{H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 5 \cdot 1(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}, 2-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}, 3-\mathrm{H}), 6.4(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right)$, and $7 \cdot 8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

N,3-Diphenyl-3-(4-tolyl) propionamide (10). 1,4-Diphenyl-azetidin-2-one (1.0 g) and toluene ($100 \mathrm{~cm}^{3}$) yielded the propionamide ($0.6 \mathrm{~g}, 42.5 \%$) as needles, m.p. $124-126^{\circ}$ (from ethanol) (Found: C, 84.1; H, 6.7; N, 4.5. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 83.8 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.5 \%$), $\nu_{\text {max. }} 3350,1660(\mathrm{C}=\mathrm{O})$, $1603,1555,1450,760$, and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2.9(14 \mathrm{H}, \mathrm{d}$, Ph and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 5 \cdot 45(1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, 3-\mathrm{H}), 7 \cdot 0(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, $2-\mathrm{H}_{2}$), and $7 \cdot 75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
$\mathrm{N}, 2,3$-Triphenyl-3-(4-tolyl)propionamide (12). 1,3,4-Tri-phenylazetidin-2-one (1.0 g) and toluene ($100 \mathrm{~cm}^{3}$) yielded the propionamide $(0.54 \mathrm{~g}, 41 \%)$ as needles, m.p. 210° (from ethanol) (Found: $M^{+}, 391 \cdot 191751 . \mathrm{C}_{28} \mathrm{H}_{25}$ NO requires M, $391 \cdot 193604$), $\nu_{\text {max }} 3350,3100,1665(\mathrm{C}=\mathrm{O}), 1603,1560,1510$, 1460,860 , and $710 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 2-3 \cdot 2(19 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 5 \cdot 1(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 2-\mathrm{H}), 5 \cdot 65(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}$, $3-\mathrm{H})$, and $7 \cdot 8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.
N -(4-Chlorophenyl)-2-phenyl-2-[9-(4-tolyl)fluoren-9-yl]acetamide (14). $\quad 1^{\prime}$-(4-Chlorophenyl)- 3^{\prime}-phenylfuorene- 9 -spiro-2^{\prime}-azetidin- 4^{\prime}-one ($1 \cdot 6 \mathrm{~g}$), and toluene ($100 \mathrm{~cm}^{3}$) yielded the acetamide ($0.28 \mathrm{~g}, 17 \%$) as buff microprisms, m.p. 210° (from ethanol) (Found: $M^{+}, 499 \cdot 170771 . \mathrm{C}_{34} \mathrm{H}_{26}$ ClNO requires $M, 499 \cdot 170282$) (for ${ }^{35} \mathrm{Cl}$), $\nu_{\text {max }} 3250(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{O}), 1603$, $1560,1500,1460,1400$, and $740 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 3-3 \cdot 5$ $\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, 2 \times \mathrm{C}_{6} \mathrm{H}_{4}\right.$, and fluorene), $4.9(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $7.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

3-(4-Methoxyphenyl)-N,3-diphenylpropionamide. 1,4-Di-phenylazetidin-2-one (0.3 g), boron trifluoride-diethyl ether $\left(2.0 \mathrm{~cm}^{3}\right)$, and anisole ($100 \mathrm{~cm}^{3}$) were heated under reflux for 60 h . Cooling, washing with water ($50 \mathrm{~cm}^{3}$), drying (MgSO_{4}) and evaporation yielded a red oil. Trituration and crystallisation yielded the propionamide ($0.15 \mathrm{~g}, 34 \%$) as needles, m.p. $160-162^{\circ}$ (from ethanol) (Found: M^{+}, 331-156611. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}$ requires $M, 331 \cdot 157220$), $\nu_{\text {max }}$ $3300,3100,1660(\mathrm{C}=\mathrm{O}), 1603,1560,1520,1460,1260\left(\mathrm{OCH}_{3}\right)$, 770 , and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 4-3 \cdot 1(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 5 \cdot 35(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, 3-\mathrm{H}), 4 \cdot 05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, and $4 \cdot 6\left(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right)$.
2,3-Diphenylinden-1-one. 1,3,4,4-Tetraphenylazetidin-2one ${ }^{11,19}(1.4 \mathrm{~g})$, boron trifluoride-diethyl ether $\left(2.0 \mathrm{~cm}^{3}\right)$, and toluene ($100 \mathrm{~cm}^{3}$) were heated together under reflux for 60 h . The solution was cooled, extracted with water $\left(50 \mathrm{~cm}^{3}\right)$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation to low bulk yielded the inden-1-one ($0.71 \mathrm{~g}, 67.5 \%$) as red prisms, m.p. $152-154^{\circ}$ (from ethanol) (lit., $151 \cdot 5-152^{\circ}$) (Found: C, $89 \cdot 1 ; \mathrm{H}, 5 \cdot 1$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 89 \cdot 4 ; \mathrm{H}, 5 \cdot 0 \%$), $\nu_{\text {max. }} 3100,1710(\mathrm{C}=\mathrm{O}), 1603,1460,1360,770$, and $710 \mathrm{~cm}^{-1}$, $\tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 3-2 \cdot 9\left(14 \mathrm{H}, \mathrm{d}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), M^{+} 282$. A
${ }_{22} \mathrm{H}$. Staudinger, Annalen, 1907, 356, 51.
${ }^{23}$ H. Staudinger and S. Jelagin, Ber., 1911, 44, 365.
similar experiment with 1,3,3,4-tetraphenylazetidin-2one ${ }^{18,22}$ also yielded 2,3 -diphenylinden-1-one (5%), and starting material.

Reaction of Boron Trifluoride with 1,3,3,4,4-Pentaphenyl-azetidin-2-one.-1,3,3,4,4-Pentaphenylazetidin-2-one ${ }^{23}$ ($1 \cdot 0$ g), boron trifluoride-diethyl ether $\left(2.0 \mathrm{~cm}^{3}\right)$, and toluene ($100 \mathrm{~cm}^{3}$) were heated under reflux for 60 h . The solution was cooled, washed with water ($50 \mathrm{~cm}^{3}$), and dried. Evaporation yielded α-phenylbenzylideneaniline $(0.4 \mathrm{~g}$, 70%) as yellow plates, m.p. 107° (from ethanol) (lit., ${ }^{23} 106^{\circ}$), $\nu_{\text {max. }} 3100,1630(\mathrm{C}=\mathrm{N}), 1600,1500,1460,1330,1300,790$, and $710 \mathrm{~cm}^{-1}$. The filtrate from the crystallisation was evaporated and the residue redissolved in chloroform $\left(10 \mathrm{~cm}^{3}\right)$. The solution was washed with 10% sodium hydroxide ($10 \mathrm{~cm}^{3}$) and the aqueous layer neutralised with sulphuric acid. Filtration gave diphenylacetic acid (0.2 g , 43%) as needles, m.p. $146-147^{\circ}$ (from water) (lit., ${ }^{186} 145^{\circ}$), $\nu_{\max } 3100,2950,1705(\mathrm{C}=\mathrm{O}), 1230,950,740$, and $700 \mathrm{~cm}^{-1}$. A further reaction of the azetidin-2-one with boron trifluoride in toluene was carried out with dry ethanol included in the reaction mixture. Ethyl diphenylacetate was isolated together with the Schiff's base; $\nu_{\max } 3050,1730$, $1603,1510,1460,1200,1150,1020,760$, and $710 \mathrm{~cm}^{-1}$, $\tau\left(\mathrm{CDCl}_{3}\right) 2.7(10 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5 \cdot 0(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5 \cdot 8(2 \mathrm{H}, \mathrm{q}$, $J 7$ and $\left.14 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$, and $8.8\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$.

Reaction of Boron Trifluoride with 1'-(4-Methoxyphenyl)$3^{\prime}, 3^{\prime}$-diphenylfuovene-9-spiro-2'-azetidin-4'-one (28).-1'-(4Methoxyphenyl) $-3^{\prime}, 3^{\prime}$-diphenylfluorene-9-spiro-2'-azetidin-4^{\prime}-one (0.5 g), boron trifluoride-diethyl ether ($1.0 \mathrm{~cm}^{3}$), and toluene $\left(50 \mathrm{~cm}^{3}\right)$ were heated under reflux for 60 h . The solution was cooled, washed with water $\left(50 \mathrm{~cm}^{3}\right)$, and extracted with 5% sodium hydroxide $\left(50 \mathrm{~cm}^{3}\right)$. The organic fraction contained unchanged azetidine-2-one and fluorenylidene-p-anisidine ($0 \cdot 12 \mathrm{~g}, 40 \%$) as orange prisms, m.p. 136° (from ethanol), $\nu_{\text {max }} 3050,2950,2850,1640(\mathrm{C}=\mathrm{N})$, 1603, 1510, 1455, $1240\left(\mathrm{OCH}_{3}\right) 1100,1040,840,800$, and $735 \mathrm{~cm}^{-1}$. Acidification of the basic fraction yielded diphenylacetic acid ($0.15 \mathrm{~g}, 50 \%$) as needles, m.p. 146° (from water), $\nu_{\max } 3100,3000,2750(\mathrm{OH}), 1710(\mathrm{C}=\mathrm{O}), 1510$, $1420,1330,1230,950,740$, and $710 \mathrm{~cm}^{-1}$.

Reaction of Boron Trifluoride with 1,4-Diphenylazetidin-2-one.-1,4-Diphenylazetidin-2-one (1.0 g), boron tri-fluoride-diethyl ether ($1.0 \mathrm{~cm}^{3}$), and chlorobenzene (100 cm^{3}) were heated together under reflux for 60 h . Cooling, washing with water ($50 \mathrm{~cm}^{3}$), drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation yielded cinnamanilide $(0.7 \mathrm{~g}, 70 \%)$ as needles, m.p. 153° (from chloroform) (lit., ${ }^{18 c} 153^{\circ}$), identical with a sample prepared from aniline and cinnamoyl chloride; $\nu_{\text {max. }} 3000$ (NH), 3050, 1665 ($\mathrm{C}=\mathrm{O}$), 1630 (C=C), 1600, 1550, 1510, 1450 , $1350,1190,990,770$, and $700 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 0-3 \cdot 2$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2 \cdot 3(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CO})$, and $3.15(1 \mathrm{H}$, d, J $16 \mathrm{~Hz}, \mathrm{PhCH}=$).
[3/1258 Received, 15th June, 1973]

[^0]: ${ }^{4}$ H. Schinabel, Angew. Chem. Internat. Edn., 1969, 8, 922.
 ${ }^{5}$ C. W. Bird and J. D. Twibell, J. Chem. Soc. (C), 1971, 3155.
 6 I. Knunyants and N. Gambaryan, Izvest. Akad. Nauk S.S.S.R. Otdel. khim. Nauk, 1957, 7, 834.

 7 S. Sarel, E. Breuer, J. T. Klug, and Y. Fattal, Israel J. Chem., 1966, 4, 233.

 8 R. Conley and W. Knopka, J. Org. Chem., 1964, 29, 496.

[^1]: - D. Curtin and J. Kauer, J. Org. Chem., 1960, 25, 880.

[^2]: 10 J. A. Moore in ' Heterocyclic Compounds with Three- and Four-Membered Rings,' part 2, ed. A. Weissberger, Interscience, New York, 1984, p. 885.
 ${ }_{11}$ R. Pfleger and A. Jager, Chem. Ber., 1957, 90, 2460.
 12 H. E. Audier, M. Fetizon, H. B. Kagan, and J. L. Luche, Bull. Soc. chim. France, 1967, 2297.

[^3]: ${ }^{17}$ L. I. Smith and H. H. Hochn, Org. Synth., Coll. Vol. III, 1955, 356.

[^4]: ${ }^{20}$ H. Staudinger, Chem. Ber., 1917, 50, 1035.
 ${ }^{21}$ O. L. Chapman and W. R. Adams, J. Amer. Chem. Soc., 1968, 90, 2333.

